Acta Crystallographica Section E

Structure Reports

Online
ISSN 1600-5368

Mohamed Osman Awaleh,* Antonnella Badia and François Brisse

Département de Chimie, Université de Montréal, CP 6128, Succ. Centre-ville, Montréal, Québec, Canada H3C 3 J7

Correspondence e-mail:
moawaleh2000@yahoo.fr

Key indicators

Single-crystal X-ray study
$T=298 \mathrm{~K}$
Mean $\sigma(\mathrm{C}-\mathrm{C})=0.004 \AA$
R factor $=0.050$
$w R$ factor $=0.147$
Data-to-parameter ratio $=17.5$
For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.
(C) 2005 International Union of Crystallography Printed in Great Britain - all rights reserved

1,10-Bis(phenylsulfanyl)decane

In the title structure, $\mathrm{C}_{22} \mathrm{H}_{30} \mathrm{~S}_{2}, L^{10}$, the asymmetric unit contains two independent molecules, both of which lie on crystallographic inversion centers, and the aliphatic chains are in the all-trans conformation. The crystal structure is stabilized by a combination of van der Waals forces and weak C$\mathrm{H} \cdots \pi$ (arene) interactions.

Comment

The self-assembly of metal-organic coordination polymers has attracted a great deal of attention because of their potential application as functional materials (Yaghi et al., 1995). Bifunctional organic ligands are usually used as spacers for the building of metal-organic framework materials (MOF) (Carlucci et al., 2002). The S atom is a soft base and has a good ability to coordinate to Ag , which is a soft acid. In addition, the dithiolate building block can afford two coordination sites to a metal center and can be used to construct supramolecular architectures (Black et al., 1995; Bu et al., 2002). When the length of the aliphatic segment between the S atoms is increased, the number of possible conformations and the flexibility of the spacer are augmented. As a result, in metalorganic crystal engineering, when flexible ligands are involved in supramolecular networks, the prediction of the topology of the polymer coordination is more difficult, since there are several other factors affecting the formation of the framework (Withersby et al., 1999, 1997; Noro et al., 2002; Blake et al., 1999). In order to study the effect of the length of the building block on the topology of metal-organic polymer coordination, the title compound, L^{10}, (I), was synthesized and its structure is reported here.

(I)

Compound (I) crystallizes with two (essentially equivalent) independent centrosymmetric molecules in the asymmetric unit, one of which is shown in Fig. 1. Each molecule has a center of symmetry at the midpoint of the central $\mathrm{C}-\mathrm{C}$ bond, namely $\mathrm{C} 35-\mathrm{C} 35^{\mathrm{i}}$ and $\mathrm{C} 45-\mathrm{C} 45^{\mathrm{ii}}$ [symmetry codes: (i) $-x$, $1-y,-z$; (ii) $1-x, 2-y, 2-z]$. The torsion angles in the aliphatic sequence $\left[\mathrm{S}-\left(\mathrm{CH}_{2}\right)_{10}-\mathrm{S}\right]$ are all trans, indicating that the molecules are in the fully extended conformation (Table 1). The dihedral angles formed between the aromatic

Received 16 June 2005 Accepted 27 June 2005 Online 9 July 2005

Figure 1
The molecular structure and atomic numbering of one independent molecule of (I). Displacement ellipsoids are drawn at the 50% probability level. H atoms have been omitted. The unlabeled part of the molecule is related by the symmetry transformation $(-x, 1-y,-z)$.

Figure 2

A crystal packing diagram of (I). H atoms have been omitted.
rings and the $\left[\mathrm{S}-\left(\mathrm{CH}_{2}\right)_{10}-\mathrm{S}\right]$ sequences are 21.8 (2) and $23.1(2)^{\circ}$ for molecules 1 and 2 , respectively. The phenyl groups of neighboring molecules form a dihedral angle of $62.8(1)^{\circ}$. The bond distances and angles in (I) are in the normal ranges (Table 1) (International Tables for Crystallography, 1995, Vol. C).

In the crystal structure of (I) (Fig. 2), there are no significant $\pi-\pi$ stacking interactions but, in addition to normal van der Waals interactions, there are some weak $\mathrm{C}-\mathrm{H} \cdots \pi$ (arene) interactions (Table 2).

Experimental

1,10-Bis(phenylthio)decane, L^{10}, (I), was synthesized according to the published procedure of Hartley et al. (1979). Compound (I) was obtained as a crystalline powder from which a platelet crystal suitable for X-ray analysis was isolated (yield 91\%). Analysis, found: C 73.47, H 8.59%; calculated for $\mathrm{C}_{22} \mathrm{H}_{30} \mathrm{~S}_{2}$: C 73.68, H 8.43\%. ${ }^{1} \mathrm{H}$ NMR (acetone- d_{6}, δ, p.p.m.): $1.28\left[t, 4 \mathrm{H},-\mathrm{S}-\mathrm{CH}_{2}-\mathrm{CH}_{2}-\mathrm{CH}_{2}-\mathrm{CH}_{2}-\right.$ $\left.\left(\mathrm{CH}_{2}\right)_{2}-\mathrm{CH}_{2}-\mathrm{CH}_{2}-\mathrm{CH}_{2}-\mathrm{CH}_{2}-\mathrm{S}-\right], 1.30 \quad\left[q t, 4 \mathrm{H},-\mathrm{S}-\mathrm{CH}_{2}-\right.$
$\mathrm{CH}_{2}-\mathrm{CH}_{2}-\left(\mathrm{CH}_{2}\right)-\mathrm{CH}_{2}-\mathrm{CH}_{2}-\left(\mathrm{CH}_{2}\right)-\mathrm{CH}_{2}-\mathrm{CH}_{2}-\mathrm{CH}_{2}-\mathrm{S}-$],
$1.45\left[q t, 4 \mathrm{H},-\mathrm{S}-\mathrm{CH}_{2}-\mathrm{CH}_{2}-\left(\mathrm{CH}_{2}\right)-\mathrm{CH}_{2}-\mathrm{CH}_{2}-\mathrm{CH}_{2}-\mathrm{CH}_{2}-\right.$ $\left.\left(\mathrm{CH}_{2}\right)-\mathrm{CH}_{2}-\mathrm{CH}_{2}-\mathrm{S}-\right], 1.64\left[q t, 4 \mathrm{H},-\mathrm{S}-\mathrm{CH}_{2}-\left(\mathrm{CH}_{2}\right)-\mathrm{CH}_{2}-\right.$
$\left.\mathrm{CH}_{2}-\mathrm{CH}_{2}-\mathrm{CH}_{2}-\mathrm{CH}_{2}-\mathrm{CH}_{2}-\left(\mathrm{CH}_{2}\right)-\mathrm{CH}_{2}-\mathrm{S}-\right], 2.97[t, 4 \mathrm{H},-\mathrm{S}-$ $\left(\mathrm{CH}_{2}\right)-\mathrm{CH}_{2}-\mathrm{CH}_{2}-\mathrm{CH}_{2}-\mathrm{CH}_{2}-\mathrm{CH}_{2}-\mathrm{CH}_{2}-\mathrm{CH}_{2}-\mathrm{CH}_{2}-$ $\left(\mathrm{CH}_{2}\right)$-S-], 7.16-7.35 (m, 10H, C $\left.\mathrm{C}_{6} \mathrm{H}_{5}-\right)$.

Crystal data
$\mathrm{C}_{22} \mathrm{H}_{30} \mathrm{~S}_{2}$
$M_{r}=358.58$
Triclinic, $P \overline{1}$
$a=5.570$ (2) A
$b=7.943$ (3) \AA
$c=22.953$ (7) A
$\alpha=82.82(3)^{\circ}$
$\beta=85.05(3)^{\circ}$
$\gamma=89.55(3)^{\circ}$
$V=1003.8(6) \AA^{3}$

Data collection

Enraf-Nonius CAD-4
diffractometer
ω scans
Absorption correction: Gaussian,
from crystal shape (ABSORP in
NRCVAX; Gabe et al.1989)
$T_{\text {min }}=0.528, T_{\text {max }}=0.868$
24003 measured reflections
3799 independent reflections

$$
Z=2
$$

$D_{x}=1.186 \mathrm{Mg} \mathrm{m}^{-3}$
$\mathrm{Cu} K \alpha$ radiation
Cell parameters from 25
reflections
$\theta=20.0-25.0^{\circ}$
$\mu=2.38 \mathrm{~mm}^{-1}$
$T=298$ (2) K
Platelet, colorless
$0.25 \times 0.11 \times 0.05 \mathrm{~mm}$

2520 reflections with $I>2 \sigma(I)$
$R_{\text {int }}=0.038$
$\theta_{\text {max }}=69.9^{\circ}$
$h=-6 \rightarrow 6$
$k=-9 \rightarrow 9$
$l=-28 \rightarrow 28$
4 standard reflections
frequency: 60 min
intensity decay: none

Refinement

Refinement on F^{2}
H -atom parameters constrained
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.050$
$w=1 /\left[\sigma^{2}\left(F_{\mathrm{o}}^{2}\right)+(0.0908 P)^{2}\right]$
where $P=\left(F_{\mathrm{o}}{ }^{2}+2 F_{\mathrm{c}}{ }^{2}\right) / 3$
$S=0.91$
3799 reflections
217 parameters
$(\Delta / \sigma)_{\max }<0.001$ 。
$\Delta \rho_{\text {max }}=0.23 \mathrm{e} \AA^{-3}$
$\Delta \rho_{\min }=-0.47 \mathrm{e}^{-3}$

Table 1
Selected geometric parameters ($\left(\AA^{\circ}{ }^{\circ}\right)$.

S1-C11	$1.764(2)$	S2-C41	$1.790(3)$
S1-C31	$1.796(3)$	C35-C35	$1.513(4)$
S2-C21	$1.759(2)$	C45-C45	$1.511(4)$
C11-S1-C31	$104.59(11)$	C21-S2-C41	$105.20(12)$
S1-C31-C32-C33	$179.33(19)$	S2-C41-C42-C43	$178.6(2)$
C31-C32-C33-C34	$179.8(2)$	C41-C42-C43-C44	$178.7(2)$
C32-C33-C34-C35	$-179.9(2)$	C42-C43-C44-C45	$178.9(2)$
C33-C34-C35-C35	$179.8(3)$	C43-C44-C45-C45	$179.4(3)$

Symmetry codes: (i) $-x, 1-y,-z$; (ii) $1-x, 2-y, 2-z$.

Table 2
Hydrogen-bond geometry ($\AA,{ }^{\circ}$).
Cg 2 is the centroid of the C21-C26 ring.

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
C12-H12 $\cdots \mathrm{Cg}^{2 \mathrm{iii}}$	0.93	2.88	$3.621(3)$	137
C15-H15 $\mathrm{Cg2}^{\text {iv }}$	0.93	2.91	$3.638(3)$	136

Symmetry codes: (iii) $1-x, 1-y, 1-z$; (iv) $-x, 2-y, 1-z$.

H atoms were positioned geometrically ($\mathrm{C}-\mathrm{H}$ distances of $0.93-$ $0.97 \AA$) and were included in the refinement in the riding-model approximation, with $U_{\text {iso }}(\mathrm{H})=1.2 U_{\text {eq }}(\mathrm{C})$. A final verification of possible voids was performed using the VOID routine of the PLATON program (Spek, 2003).

organic papers

Data collection: CAD-4 Software (Enraf-Nonius 1989); cell refinement: CAD-4 Software; data reduction: local program; program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: SHELXTL (Bruker, 1997); software used to prepare material for publication: UdMX (Maris, 2004).

This work was supported by the Natural Sciences and Engineering Research Council of Canada (FB). MOA thanks the Programme Canadien de Bourse de la Francophonie and the Organisation Internationale de la Francophonie for a graduate scholarship.

References

Black, J. R., Champness, N. R., Levason, W. \& Reid, G. (1995). J. Chem. Soc. Dalton Trans. pp. 3439-3445.
Blake, A. J., Champness, N. R., Hubberstey, P., Li, W. S., Withersby, M. A. \& Schroder, M. (1999). Coord. Chem. Rev. 183, 117-138.

Bruker (1997). SHELXTL. Version 5.10. Bruker AXS Inc., Madison, Wisconsin, USA.
Bu, X. H., Chen, W., Hou, W. F., Du, M., Zhang, R. H. \& Brisse, F. (2002). Inorg. Chem. 41, 3477-3482.
Carlucci, L., Ciani, G., Proserpio, D. M. \& Rizzato, S. (2002). CrystEngComm, 4, 413-425.
Enraf-Nonius (1989). CAD-4 Software. Version 5.0. Enraf-Nonius, Delft, The Netherlands.
Gabe, E. J., Le Page, Y., Charland, J.-P., Lee, F. L. \& White, P. S. (1989). J. Appl. Cryst. 22, 384-387.
Hartley, F. R., Murray, S. G., Levason, W., Soutter, H. E. \& McAuliffe, C. A. (1979). Inorg. Chim. Acta, 35, 265-277.

Maris, T. (2004). UdMX. Université de Montréal, Canada.
Noro, S. I., Kitaura, R., Kondo, M., Kitagawa, S., Ishii, T., Matsuzaka, H. \& Yamashita, M. (2002). J. Am. Chem. Soc. 124, 2568-2583.
Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.
Spek, A. L. (2003). J. Appl. Cryst. 36, 7-11.
Withersby, M. A., Blake, A. J., Champness, N. R., Cooke, P. A., Hubberstey, P., Li, W. S. \& Schroder, M. (1999). Inorg. Chem. 38, 2259-2266.
Withersby, M. A., Blake, A. J., Champness, N. R., Hubberstey, P., Li, W. S. \& Schroder, M. (1997). Angew. Chem. Int. Ed. 36, 2327-2329.
Yaghi, O. M., Li, G. \& Li, H. (1995). Nature (London), 378, 703-706.

